Sains Malaysiana 54(2)(2025): 377-388

http://doi.org/10.17576/jsm-2025-5402-05

 

Kesan Rawatan Dolomit terhadap Kekuatan Mampatan Tanah Jerlus dari Kawasan Penanaman Padi MADA, Kedah

(Effect of Dolomite Treatment on Compressive Strength of Soft Soil from MADA Paddy Growing Area, Kedah)

 

 Nadhirah Mursidi*, Mohamed Fauzi Md Isa & Azimah Hussin

 

Program Geologi, Jabatan Sains Bumi dan Alam Sekitar, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 8 May 2024/Accepted: 17 October 2024

 

Abstrak

Isu tanah jerlus di kawasan penanaman padi Lembaga Kemajuan Pertanian Muda (MADA) menjadi ancaman besar kepada para petani kerana ia mampu menjejaskan kebolehkerjaan tanah sawah dan jumlah pengeluaran beras negara. Tanah jerlus merupakan tanah tidak subur yang berkelimpahan mineral lempung, mudah dimampatkan, kekuatan mekanikal yang rendah dan kebolehtelapan yang rendah. Kajian ini telah dilakukan untuk meneliti keberkesanan dolomit terhadap cirian mekanikal tanah jerlus dari kawasan kajian. Penambahan dolomit sebagai bahan penstabil telah dilakukan mengikut nisbah 3%, 6%, 9% dan 12% daripada berat kering tanah jerlus dan diawet selama 3, 7, 14 dan 28 hari. Hasil kajian yang diperoleh menunjukkan tanah jerlus dari kawasan kajian mempunyai pH yang neutral (7.64-7.68), berkelembapan tinggi (57.85-66.62%), tinggi kandungan organik (8.37-10.69%), mempunyai nilai indeks keplastikan yang tinggi (17.63-17.69%), memiliki nilai graviti tentu 2.23-2.28 dan bertekstur lempung berlodak. Penambahan dolomit sebagai bahan tambahan rawatan telah dikesan dapat mengurangkan kekuatan mekanikal tanah jerlus. Berdasarkan ujian kekuatan mampatan tidak terkekang (UCS), penambahan 12% dolomit merupakan nilai optimum yang dapat meningkatkan kekuatan tanah jerlus dalam keadaan direndam dan tidak direndam (41.95-679.3 kPa) dengan tempoh rawatan yang berbeza.

 

Kata kunci: Dolomit; sifat fizikokimia; tanah jerlus

 

Abstract

The issue of soft soil in the paddy cultivation area of the Muda Agricultural Development Authority (MADA) poses a significant threat to farmers as it can undermine the viability of paddy fields and the country’s rice production. The soft soil is an infertile soil, abundant with clay minerals, easily compressed, low mechanical strength, low permeability, and high potential for failure. Accordingly, this study was carried out to examine the effectiveness of dolomite stabilizers against the mechanical characteristics of soft soils from the study area. The addition of dolomite as a stabilizing material was carried out in the ratio of 3%, 6%, 9%, and 12% of the dry weight of the soft soil and was cured for 3, 7, 14, and 28 days. The results showed that the soft soil from the study area had a neutral pH (7.64-7.68), high moisture content (57.85-66.62%), high organic content (8.37-10.69%), a high plasticity index value (17.63-17.69%), a specific gravity value of 2.23-2.28, and a silty clay texture. The addition of dolomite as a treatment additive has been detected to reduce the mechanical strength of the soft soil. Based on the unconfined compressive strength (UCS) test, the addition of 12% dolomite is the optimum value that can enhance the strength of soft soil in both saturated and unsaturated conditions (41.95-679.3 kPa) with varying treatment durations.

 

Keywords: Dolomite; physicochemical characteristic; soft soil

 

 

REFERENCES

Ahmed, A.H., Hassan, A.M. & Lotfi, H.A. 2020. Stabilization of expansive sub-grade soil using hydrated lime and dolomitic-limestone by-product (DLP). Geotechnical and Geological Engineering 38(2): 1605-1617.

Al-Khafaji, R., Dulaimi, A., Jafer, H., Mashaan, N.S., Qaidi, S., Obaid, Z.S. & Jwaida, Z.  2023. Stabilization of soft soil by a sustainable binder comprises ground granulated blast slag (GGBS) and cement kiln dust (CKD). Recycling 8(1): 10.

Al-Waily, M.J.M. 2019. Effect of mixing granular materials on soft soil properties. 4th Scientific International Conference Najaf (SICN), Al-Najef, Iraq. hlm. 172-177.

Amirul Najmi Shukri, Saiful Azhar Ahmad Tajudin & Ahmad Hakimi Mat Nor. 2021. Determination of unconfined compressive strength and atterberg limit of soft clay by stabilizing with sodium silicate and biomass silica in Batu Pahat. Journal of Sustainable Underground Exploration 1(1): 20-24.

Ayeldeen, M. & Kitazume, M. 2017. Using fiber and liquid polymer to improve the behaviour of cement-stabilized soft clay. Geotextiles and Geomembranes 45(6): 592-602.

Azizul, G. 2008. Soil hardpan improvement technique using vibrator subsoiler for rice mechanization farm. Buletin Teknologi Tanaman 5: 1-4.

Azura Md Zahri & Adnan Zainorabidin. 2019. An overview of traditional and non traditional stabilizer for soft soil. IOP Conference Series: Materials Science and Engineering 527(1): 1-9.

Baldovino, J.J.A., Izzo, R.L.S., Rose, J.L. & Domingos, M.D.I. 2021. Strength, durability, and microstructure of geopolymers based on recycled-glass powder waste and dolomitic lime for soil stabilization. Construction and Building Materials 271: 121874.

Bar-tal, A., Saha, U.K., Raviv, M. & Tuller, M. 2019. Inorganic and synthetic organic components of soilless culture and potting mixtures. Dlm. Soilless Culture, disunting oleh Raviv, M., Lieth, J.H. & Bar-Tal, A. London: Academic Press. hlm. 259-301.

Bergaya, F. & Lagaly, G. 2013. Developments in Clay Science. Oxford: Elsevier Inc.

Bergaya, F. & Lagaly, G. 2006. Chapter 1 - General introduction: Clays, clay minerals, and clay science. Developments in Clay Science. Elsevier. 5: 1-19.

Chen, C., Wei, K., Gu, J., Huang, X., Dai, X. & Liu, Q.  2022. Combined effect of biopolymer and fiber inclusions on unconfined compressive strength of soft soil. Polymers 14(4): 787.

Cheng, H. 2019. Kaolinite nanomaterials: Preparation, properties and functional applications. Dlm Nanomaterials from Clay Minerals: A New Approach to Green Functional Materials, disunting oleh Zhou, Y. & Liu, Q. Oxford: Elsevier Inc. hlm. 285-334.

Consoli, N.C., Prietto, P.D.M., da Silva Lopes Jr., L. & Winter, D. 2014. Control factors for the long term compressive strength of lime treated sandy clay soil. Transportation Geotechnics 1(3): 129-136.

Corradini, C. 2014. Soil moisture in the development of hydrological processes and its determination at different spatial scales. Journal of Hydrology 516: 1-5.

Danso, H. 2018. Suitability of soil for earth construction as building material. Advancements in Civil Engineering & Technology 2(3): ACET.000540.2018.

Dhar, S. & Hussain, M. 2021. The strength and microstructural behavior of lime stabilized subgrade soil in road construction. International Journal of Geotechnical Engineering 15(4): 471-483.

Dzulkafli, M.A., Sulaiman, N. & Harun, Z. 2019. Geologi struktur formasi Kubang Pasu di Kawasan Hutan Aji, Perlis, Semenanjung Malaysia. Sains Malaysiana 48(1): 23-31.

Fajobi, A.B., Ige, O.O. & Adeleye, O.K. 2012. Engineering properties of acrylic resin on lime stabilized soil. Transitional Journal of Science and Technology 2(11): 113-127.

Ghareh, S., Kazemian, S. & Shahin, M. 2020. Assessment of compressibility behavior of organic soil improved by chemical grouting: An experimental and microstructural study. Geomechanics and Engineering 21: 337-348.

Guggenheim, S., Martin, R.T., Alietti, A., Drits, V.A., Formoso, M.L.L., Galán, E., Köster, H.M., Morgan, D.J., Paquet, H., Watanabe, T., Bain, D.C., Ferrell, R.E., Bish, D.L., Fanning, D.S., Guggenheim, S., Kodama, H. & Wicks, F.J. 1995. Definition of clay and clay mineral: Joint report of the AIPEA nomenclature and CMS nomenclature committees. Clays and Clay Minerals 43(2): 255-256.

Gu, K., Jin, F., Al-Tabbaa, A. & Shi, B. 2014. Initial investigation of soil stabilization with calcined dolomite-GGBS blends. Geo-Shanghai 2014 Conference. http://dx.doi.org/10.1061/9780784413401.015

Gunasekaran, S., Anbalagan, G. & Pandi, S. 2006. Raman and infrared spectra of carbonates of calcite structure. Journal of Raman Spectroscopy 37(9): 892-899.

Habibah Jamil, Lee Pei Theng, Khairiah Jusoh, Ahmad Mahir Razali & Fouzi B Ali. 2011. Speciation of heavy metals in paddy soils from selected areas in Kedah and Penang, Malaysia. African Journal of Biotechnology 10(62): 13505-13513.

Huat, B.B.K. 2006. Effect of cement admixtures on the engineering properties of tropical peat soils. Electronic Journal of Geotechnical Engineering 11 B(7): 1113-1120.

John, E., Matschei, T. & Stephan, D. 2018. Nucleation seeding with calcium silicate hydrate- A review. Cement and Concrete Research 38(113): 74-85.

Judson, S. & Kauffman, M.E. 1990a. Underground water. Dlm. Physical Geology, Edisi ke-8, disunting oleh Huebner, V. New Jersey: Prentice-Hall, Inc. hlm. 305-320.

Judson, S. & Kauffman, M.E. 1990b. Weathering and soils. Dlm. Physical Geology, Edisi ke-8, disunting oleh Huebner, V. New Jersey: Prentice-Hall, Inc. hlm. 74-93.

Kaliakin, V.N. 2017. Example problems related to soil identification and classification. Soil Mechanics: Calculations, Principles, and Methods. Elsevier Inc. hlm. 51-92.

Kaniraj, S.R. & Joseph, R.R. 2006. Geotechnical behaviour of organic soil in Sarawak. Prosiding 4th International Conference Soft Soil Engineering. hlm. 267-274.

Latifi, N., Meehan, C.L., Muhd.Zaimi Abd Majid & Horpibulsuk, S. 2016. Strengthening montmorillonitic and kaolinitic clays using a calcium-based non-traditional additive: A micro-level study. Applied Clay Science 132-133: 182-193.

Li, B. 2019. Study on the strength influence of pile driving disturbance on the surrounding soil. E3S Web of Conferences 136: 8-10.

Lim, S.M., Wijeyesekera, D.C., Lim, A.J.M.S. & Bakar, I.B.H. 2014. Critical review of innovative soil road stabilization techniques. International Journal of Engineering and Technology Research 3(5): 204-211.

Marwan, M.M. & Rowell, D.L. 1995. Cation exchange, hydrolysis and clay movement during the displacement of saline solutions from soils by water. Irrigation Science 16(2): 81-87.

Mathew, A. & Sasikumar, A. 2017. Performance of soft soil reinforced with bamboo and geonet. International Research Journal of Engineering and Technology 04(11): 646-649.

Mehta, B. & Sachan, A. 2017. Effect of mineralogical properties of expansive soil on its mechanical behavior. Geotechnical and Geological Engineering 35(6): 2923-2934.

Mohamad, N.O., Razali, C.E., Hadi, A.A.A., Som, P.P., Eng, B.C., Rusli, M.B. & Mohamad, F.R. 2016. Challenges in construction over soft soil - Case studies in Malaysia. IOP Conference Series: Materials Science and Engineering 136(1): 1-8.

Mohd Shahrin Yob, Ayob Katimon & Suhaimi Othman. 1989. Soil drying requirement for mobility of heavy combine harvesters in rice fields. MARDI Research Journal 17(2): 296-301.

Mohamed Fauzi Md Isa, Azimah Hussin, Nor Shahidah Mohd Nazer, Mohd Taufik Ahmad, Mohd Khusairy Khadzir, Mohd Fakhrul Zaman Omar & Eddy Herman Sharu. 2023. Reviews of soft soil phenomena in rice cultivation at MADA, Kedah, Malaysia: Charactization and approaches. Physics and Chemistry of the Earth, Parts A/B/C 132: 1-31.

Muhammad Naim Fadzli Abd Rani, Mohamad Najib Mohd Yusof, Shahida Hashim, Elixon Sunian @ Elixson Sulaiman & Asfaliza Ramli. 2015. Pengurusan kesuburan tanah dan nutrien untuk tanaman padi di Malaysia. Buletin Teknologi MARDI 8: 37-44.

Muhammad Rendana, Wan Mohd Razi Idris, Sahibin Abdul Rahim, Zulfahmi Ali Rahman, Tukimat Lihan & Habibah Jamil. 2019. Effects of organic amendment on soil organic carbon in treated soft clay in paddy cultivation area. Sains Malaysiana 48(1): 61-68.

Muhammad Rendana, Wan Mohd Razi Idris, Zulfahmi Ali Rahman, Tukimat Lihan, Habibah Jamil & Sahibin Abd Rahim. 2017. Kekuatan struktur lapisan keras (Hardpan) dan ciri fizik tanah jerlus di kawasan penanaman padi MADA Alor Senibong, Kedah, Malaysia. Malaysian Journal of Environmental Management 16(1): 3-11.

Mukesh, A.P. & Patel, H.S. 2012. A review on the effects of stabilizing agents for stabilization of weak soil. Civil and Environmental Research 2(6): 1-7.

Mukherjee, S. 2013. The Science of Clays: Applications in Industry, Engineering and Environment. Dordrecht: Springer Netherlands.

Naeini, S.A., Naderinia, B. & Izadi, E. 2012. Unconfined compressive strength of clayey soils stabilized with waterborne polymer. KSCE Journal of Civil Engineering 16(6): 943-949.

Ngo, D.H., Horpibulsuk, S., Suddeepong, A., Hoy, M., Chinkulkijniwat, A., Arulrajah, A. & Chaiwan, A.  2020. Compressibility of ultra-soft soil in the Mae Moh Mine, Thailand. Engineering Geology 271: 105594.

Nugroho, S.A., Wibisono, G., Ongko, A. & Mauliza, A.Z. 2021. Effects of high plasticity and expansive clay stabilization with lime on UCS testing in several conditions. Journal of the Civil Engineering Forum 7(2): 147-154.

Onyelowe, K.C., Onyia, M.E., Van, D.B., Baykara, H. & Ugwu, H.U. 2021. Pozzolanic reaction in clayey soils for stabilization purposes: A classical overview of sustainable transport geotechnics. Advances in Materials Science and Engineering 2021: 6632171.

Oyediran, I.A. & Durojaiye, H.F. 2011. Variability in the geotechnical properties of some residual clay soils from southwestern Nigeria. International Journal of Scientific and Engineering Research 2(9): 235-240.

Paneru, H. 2020. Cement stabilization of soft soil subgrade. Kathford Journal of Engineering and Management 2(1): 1-16.

Pocknee, S. & Sumner, M.E. 1997. Cation and nitrogen contents of organic matter determine its soil liming potential. Soil Science Society of America Journal 61(1): 86-92.

Prakash, K., Sridharan, A., Thejas, H.K. & Swaroop, H.M. 2012. A simplified approach of determining the specific gravity of soil solids. Geotechnical and Geological Engineering 30(4): 1063-1067.

Prakash, S. & Jain, P. 1992. Engineering Soil Testing. Roorkee: Nem Chand & Bros.

Puppala, A.J. 2016. Advances in ground modification with chemical additives: From theory to practice. Transportation Geotechnics 9: 123-138.

Raju, V.R. & Daramalinggam, J. 2012. Ground improvement: Principles and applications in Asia. Proceedings of the Institution of Civil Engineers: Ground Improvement 165(2): 65-76.

Rasheed, R.M., Moghal, A.A.B., Rambabu, S. & Almajed, A. 2023. Sustainable assessment and carbon footprint analysis of polysaccharide biopolymer-amended soft soil as an alternate material to canal lining. Frontiers in Environmental Science https://doi.org/10.3389/fenvs.2023.1214988

Rengel, Z. 2011. Soil pH, soil health and climate change. Dlm. Soil Health and Climate Change, disunting oleh Singh, B., Cowie, A. & Chan, K. Berlin: Springer. hlm. 69-85.

Rogoff, M.J. & Meng, F.S. 2019. Energy from Waste Technology. Waste-to-Energy. Edisi ke-3. New York: William Andrew Publishing. hlm. 29-56.

Rohayu Che Omar & Rashid Jaafar. 2000. The characteristics and engineering properties of soft soil at Cyberjaya. Geological Society of Malaysia 26(5): 313-322.

Sargent, P. 2015. The development of alkali-activated mixtures for soil stabilisation. Dlm. Handbook of Alkali-Activated Cements, Mortars and Concretes, disunting oleh Pacheco-Torgal, F., Labrincha, J.A., Leonelli, C., Palomo, A. & Chindaprasirt, P. Oxford: Woodhead Publishing Limited. hlm. 555-604.

Saride, S., Puppala, A.J. & Chikayala, S.R. 2013. Swell-shrink and strength behaviors of lime and cement stabilized expansive organic clays. Applied Clay Science 85: 39-45.

Sim, L.W., Katman, H.Y.B., Baharuddin, I.N.Z.B., Ravindran, G., Ibrahim, M.R. & Alnadish, A.M. 2024. Global research trends in soft soil management for infrastructure development: Opportunities and challenges. IEEE Access 12: 73731-73751.

Sun, J., Wu, Z., Cheng, H., Zhang, Z. & Frost, R.L. 2014. A Raman spectroscopic comparison of calcite and dolomite. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 117: 158-162.

Tiwari, B. & Ajmera, B. 2018. Soil laboratory tests. Dlm. Encyclopedia of Engineering Geology, disunting oleh Bobrowsky, P.T. & Marker, B. Springer International Publishing: Cham. hlm. 853-871.

Velde, B. 1992. Introduction to Clay Minerals: Chemistry, Origins Uses and Environmental Significance. London: Chapman & Hall.

Venkatarama Reddy, B.V. 2012. Stabilised soil blocks for structural masonry in earth construction. Dlm. Modern Earth Buildings: Materials, Engineering, Constructions and Applications, disunting oleh Hall, M., Lindsay, R. & Krayenhoff, M. Cambridge: Woodhead Publishing Limited. hlm. 324-363.

Vishwanath, G., Pramod, K. & Ramesh, V. 2014. Peat soil stabilization with rice husk ash and lime powder. International Journal of Innovation and Scientific Research 9: 225-227.

Wang, Y., Tang, C., Wu, J., Liu, X. & Xu, J. 2013. Impact of organic matter addition on pH change of paddy soils. Journal of Soils and Sediments 13(1): 12-23.

Webb, J., David, K. & Collins, H.R. 1967. Geological aspects of a current landslide in Vinton County, Ohio. The Ohio Journal of Science 67(2): 65-74.

Yared, S., Someshakher, S.H., Simie, T. & Amana, W. 2023. Depth and soil physiochemical properties effects on soil compaction in agricultural field. African Journal of Agricultural Research 19(2): 170-177.

Ye, Y-C. 2017. Chapter 2: Marine geographic and geological environment of China. Marine Geo-Hazards in China. Elsevier. hlm. 35-75.

Zaini, M.S.I. & Hasan, M. 2024. Stabilization of expansive soil using silica fume and lime. Construction 4(1): 45-51.

Zaki Musa, Ernie Suryati Mohamad Zain, Liza Nuriati Lim Kim Choo, Hassan Saji, Long Sidi, Azrul Syahriman Haironi, Shamsiah Sekot & Jaraie Marali. 2020. Pengurusan agronomi padi tradisional di Batang Lupar, Sarawak. Buletin Teknologi MARDI 19: 25-33.

*Corresponding author; email: nadhirah.mu@gmail.com

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next